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ABSTRACT 

A method is described for deconvoluting chromatograms which contain overlapping peaks. Parameters can be selected to ensure that 
attenuation of peak areas is uniform over any desired range of peak widths. A simple extension of the method greatly reduces the 
negative overshoot frequently encountered with deconvolutions. The deconvoluted chromatograms are suitable for integration by 
conventional methods. 

INTRODUCTION 

Although considerable effort has been expended 
over the years to improve the peak-resolving power 
of chromatographic techniques, one is frequently 
still faced with data-containing peaks which are 
incompletely separated from each other, or which 
contain large baseline drifts or other features which 
render accurate peak-area determination difficult. 
Conventional peak integration algorithms utilize 
running averages to compute baselines and simple 
tangent-skimming and perpendicular drop methods 
for separating peaks. Although robust, these algo- 
rithms are notoriously inaccurate [1,2], and require 
numerous parameters which must be determined 
and adjusted empirically for each chromatogram, a 
laborious and inexact process which in effect intro- 
duces numerous assumptions about peak width, 
peak shape, etc. In addition, as they generally rely on 
detecting points at which the first derivative (dy/dx) 
crosses zero to separate peaks, they are usually 
incapable of detecting peaks which are not separated 
by a horizontal region or valley. 

An alternative approach is to deconvolute the 
chromatogram mathematically to remove all peaks 
above a certain threshold peak width (i.e., below 

a threshold frequency). This also automatically 
flattens the baseline. In practice, however, attempts 
at deconvolution often produce unsatisfactory re- 
sults, negative peaks or discrepancies in areas for 
peaks of different width. Other methods, such as 
moments analysis [3], orthogonal polynomial anal- 
ysis of chromatogram segments [4,5] and an inverse 
diffusion model [6], have also been proposed for 
analyzing overlapping peaks. The relative advan- 
tages of several types of deconvolution methods 
have been compared [7]. In this paper, a straight- 
forward method for deconvoluting chromatograms 
prior to integration is presented and its applicability 
to actual chromatographic analyses is discussed. 

EXPERIMENTAL AND RESULTS 

Two most commonly used mathematical tech- 
niques for deconvoluting sets of numbers are non- 
linear least-squares (NLR) analysis [8] and the 
Fourier transform method. In least-squares analy- 
sis, the chromatographic data are fitted to a sum of 
several Gaussians, solving for 3n parameters (posi- 
tion, width and height) for each peak. Although 
successful for single peaks [9], NLR analyses typical- 
ly fail to converge when more than three or four 
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peaks are involved. In the Fourier transform meth- 
od, the data are converted to a set of complex 
frequencies, then divided by the transform of a 
transfer function, which is a function which repre- 
sents the data smearing process [lo] (since Fourier 
transforms yield complex numbers, complex divi- 
sion must be used). The new set of complex frequen- 
cies is then inverse transformed to obtain the 
deconvoluted data. This method is also considerably 
faster than NLR. 

The principle of deconvolution is that convo- 
luting two functions (b and c) is equivalent to 
multiplying their Fourier transforms (B and C), i.e., 
if 

a(x) = b(x) 0 c(x) 

then 

A(o) = B(w)C(o) 

The variance of the convolution product of the two 
functions is equal to the sum of the variances of the 
individual functions: 

f? = 0; + ff2 II c 

Deconvolution is simply the reverse of this process, 
dividing the transform of the data by that of the 
transfer function, thereby subtracting its contribu- 
tion to the variance. 

As the observed peaks in a chromatogram are 
products created by the peak-smearing process 
which we desire to reverse, the transfer function 
should in some manner mimic the peak shape. 
Although peak shape has been modelled as a simple 
Gaussian [ 111, a combination of Gauss and Cauchy 
functions [ 12,131, a Gaussian in the presence of noise 
[14], a polynomial series [5], a combination of 
statistical moments [15] or an exponentially modi- 
fied Gaussian [l&18], there are reasons for using a 
simple Gaussian curve. Diffusion processes and 
response time-limited detector response functions, 
which are the main contributors to peak broaden- 
ing, are both Gaussian in form. Also, conveniently, 
the Fourier power spectrum of a Gaussian is another 
Gaussian, as well as a real function. This reduces the 
number of transforms needed in deconvolution from 
three to two, as the desired Gaussian can be easily 
generated when needed. Finally, Gaussians do not 
produce fast Fourier transform (FFT) oscillation 
artifacts, in contrast with a sharp threshold cut-off 
function or triangle function. 

Unfortunately, performing a deconvolution as 
described above frequently yields unsatisfactory 
results, as the amplitudes of some frequencies in the 
transfer function may be extremely small, resulting 
in enormous amplitudes of high-frequency compo- 
nents of the deconvoluted data, possibly even ex- 
ceeding the dynamic range of the computer. An 
alternative method, shown in Table I, involves 
creating a high-pass lilter function based on a 
Gaussian, retaining its favorable characteristics 
such as an absence of oscillation artifacts, x-axis 
symmetry and steep fall-off, but having a wide 
plateau for high frequencies and attenuating low 
ones. The non-zero real and imaginary Fourier 
frequencies are then multiplied by this function, that 
is, by 

.f = [ 1 - exp( - &x2)] ( 1 - exp[ - &(x - n)2]> 

x = 1,2,...,n (1) 

where n is the number of data points and x is the 
index for the points for (in this case) the frequency 
domain (Fig. 1). The o = 0 frequency is set to zero. 
Strictly, this is a type of convolution rather than 
deconvolution, as it is a multiplication rather than 
division, but the effect is that of deconvoluting wide 
and narrow peaks as the term is frequently used in 
chromatography. Fig. 1 shows the function used, 
which is essentially a filter function. The adjustable, 
dimensionless exponential constant for the filter, bf, 
is related to the attenuation for a peak component of 

TABLE I 

PROCEDURE FOR DECONVOLUTING CHROMATO- 
GRAMS 

Step Action 

1 Create Gaussian filter function of length n: 
S = [I - exp( - hrx*)] { 1 - exp[ - hr(x - n)2]} 
where bt is an adjustable parameter and n is the number 
of data points in the chromatogram 

2 Fourier transform the data 
3 Calculate the new real and imaginary frequencies by 

multiplying the old frequencies &) by the filter 
function /‘and adding 
frequencies 01;: 

a fraction c of the original data 

&” = &)F) + cwb”‘, X = 0, I. 2, .1 n 
4 Inverse transform and apply a smoothing filter if 

necessary 
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Fig. 1. Filter functions computed from Gaussians with an 
exponential coefficient (b,) of 0.005, 0.002, 0.001, 0.0005, 0.0002 
and 0.0001 for a chromatogram of 512 data points. The lowest 
frequencies (near both ends of the curve) are attenuated to a 
greater extent as the Gaussian becomes wider, whereas the highest 
frequencies (center) remain unchanged. The Nyquist (maximum) 
frequency is at x = 256. A simple step function cannot be used, as 
it would create artifactual sinusoids in the final result. The 
function also must be symmetrical in order to also handle 
negative frequencies, which are customarily placed in reverse 
order above the positive frequencies by an FFT. 

frequency o (o = l/peak width in x units) by the 
equation 

b, = 41n2/wg (3) 

If the power spectrum is multiplied by the filter 

br = - w2 ln(1 - a) 

where a is the attenuation and w is the peak width at 
half-height expressed as a fraction of the total length 
of the chromatogram. This equation provides a 
useful approximation of attenuation. For example, 
if the maximum acceptable attenuation for the 
broadest peak is 0.95, and the broadest peak is 4% of 
the total length of the chromatogram, then br should 
be 0.004793 or greater. Peaks ofwidth > 8.3% of the 
total chromatogram will be attenuated by a factor 
of 2 or more. This value gives a good margin of 
safety, because for a typical high-pressure liquid 
chromatogram most of the peaks are < 1% of the 
length of the chromatogram. Even values of br which 
result in significant attenuation of some broader 
peaks may still be useful, as peaks eluting at similar 
retention times usually have similar height/width 
ratios. 

function (eqn. l), it becomes 

y = [1-exp( - brx2)]Ap[exp( - b2x2)] 

or 

y = A,{exp( - b2x2) - exp[ - (bf + b2)x2]} (4) 

The maximum value of this new curve, which occurs 
at a non-zero position, is equal to the area of the new 
deconvoluted peak. The maximum, found by setting 
dy/dx to zero, is at 

x = [$.ln(&)r 

After substituting back into eqn. 4 to obtain the y 
value at this point, one obtains 

Y mall = A,,, = A,(, -&-)(&~‘” (5) 

The relationship between attenuation and peak where the equality exp(alnb) = b” was used to 
width can be estimated more accurately from con- remove the exponential. This equation enables one 

sidering the power spectrum of an entire individual 
peak. The power spectrum is generated by taking the 
modulus of the real and imaginary components of 
the transform. It can be shown that the o = 0 
component (Le., the amplitude) of a power spectrum 
is equal to the area under the original peak (A,) in 
the time domain, and conversely, the area of the 
power spectrum curve (in the frequency domain) is 
equal to the height of the original peak (h,) times n, 
the number of data points. The power spectrum 
curve of a Gaussian peak is another Gaussian 
centered at x = 0, with an amplitude of A,, or 

y = A,exp(-b,x”) 

The exponential coefficients of a Gaussian curve 
and its corresponding power spectrum conveniently 
happen to be related by a simple inverse multiplied 
by rc2/n2. Thus, the exponential parameter b2, the 
exponential coefficient of the power spectrum, is 
calculated from b,, the exponential coefficient of the 
original peak, by the equation 

b2 = rc2/b,n2 (2) 

where b, is related to the width of the original peak, 

wp, by 
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to calculate the area (A,,,) of the new, attenuated 
Gaussian representing the deconvoluted peak. 

It is also straightforward to calculate the height 
and width of the new peak, by integrating eqn. 4. 
However, the value obtained is the height measured 
from y = 0 and not from the negative minima on 
either side of the peak. Hence the calculated h,,, 
would be an underestimate of the actual new height. 
The negative regions of the deconvoluted peak arise 
because the new power spectrum is slightly asym- 
metric. 

From the above equations, it is possible to select a 
value for hr to keep the area of a peak of any 
specified width from decreasing, within any desired 
tolerance. 

For example, suppose that a chromatogram of 
length 512, with a typical peak width wp = 5 and 
height h, = 7, was to be deconvoluted using a bf of 
0.01. The area of the peak (estimated by numerical 
integration or FFT) would be 37.26. Using eqn. 3,b, 
would be 0.1109. Then, using eqn. 2, one calculates 
b2 to be 0.0003395. The new area would be 32.088 
from eqn. 5. As this value is only 14% less than the 
starting value, the selection of 0.01 would be a 
suitable choice. 

To test whether the deconvolution method can be 
used to obtain a calibration curve, samples contain- 
ing hemoglobin, cytochrome c and various amounts 
of bovine serum albumin were subjected to size- 
exclusion high-pressure liquid chromatography 
(HPLC). The chromatograms were compressed to 
512 data points and the areas of the peaks, which 
were partially overlapping, were measured before 
and after deconvolution. For the lowest albumin 
concentrations, area measurement by both the per- 
pendicular drop and tangent-skin methods yielded 
less accurate results than measurement from the 
deconvoluted chromatograms. The areas after de- 
convolution were reduced by ca. 10% at all concen- 
trations (Fig. 2), although at the lowest concentra- 
tions this effect was difficult to observe because of 
the greater uncertainty in estimating areas from the 
original chromatograms. In contrast, the peak in the 
deconvoluted chromatogram was clearly visible, 
even at the lowest concentrations (Fig. 2, inset). 

Fig. 3a shows a chromatogram produced by an 
HPLC column under conditions of sample over- 
loading, selected to show features of erratic baseline 
drift, unresolved peaks and a flat region bounded on 

“0.0 0.1 
BSA (rng/‘r;l:) 

0.3 

Fig. 2. Calibration curves derived from a set of chromatograms, 
measuring peak areas with the vertical drop method (0) 
tangential-skim method (0) or after deconvolution using a 
simple minimum-to-minimum method (a). The original chroma- 
tograms consisted of 0.1 mg/ml hemoglobin. 0.1 mg/ml cyto- 
chrome c and various concentrations of bovine serum albumin. 
The samples were chromatographed on a 250 x 4.6 mm I.D. 
size-exclusion HPLC column (Macrosphere GPC 60, 7 pm) 
eluted with 0.1 A4 potassium acetate (pH 7.4). Inset: enlargement 
of low-concentration region. 

one side by a sharp edge, all of which make 
integration difficult. Fig. 3bd show the chromato- 
gram deconvoluted with the method in Table I, 
using bf values of 0.00005, 0.00015, 0.0005 and 
0.0015. The peaks are resolved to a greater extent 
than the original, although in Fig. 3b and c the noise 
is also increased. Note the absence of oscillation 
artifacts in the flat region at the right. Fig. 3 also 
demonstrates the importance of selecting a value 
appropriate for the largest peak in the sample. In 
Fig. 3, the curve is too narrow, hence only the 
high-frequency noise is enhanced. 

Also, there is a large negative overshoot near 
some of the larger peaks. This overshoot is one of the 
major drawbacks of deconvolution. Several sophis- 
ticated methods have been devised for removing 
these negative regions, which generally introduce a 
constraint function such as zero-clipping followed 
by several reiterations of the deconvolution [19]. 
However, a close examination of the transforms of 
the original deconvoluted chromatogram and one in 



DETERMINATION OF PEAK AREAS 133 

c 
h w 

0.00005 

N,W 
(4 

0.00015 

I 
w 

0.0005 

- 

Fig. 3. Chromatograms deconvoluted by the method in Table I 
using different values for bf. Thirty optic ganglia from squid 
(L&go puelez) were homogeneized and chromatographed on 
DEAE-Sephacel. One fraction from this column was concen- 
trated and re-chromatographed by HPLC on a column of 
AX-300, using a gradient of O-O.6 M potassium acetate (pH 7.4) 
(@20 min) and 0.6 M potassium acetate (20-60 min), and the 
absorbance was measured at 280 nm. The data set was com- 
pressed to 512 data points before processing. 

which the negative regions have been artificially re- 
moved by subtraction would reveal that the desired 
changes are essentially an increase in the low- 
frequency regions which were attenuated by the 
deconvolution. Thus, a simple alternative method is 
to add back a portion of the frequencies of the 
original data. As shown in Fig. 4, even retaining a 
small fraction of original frequencies is sufficient to 
eliminate the negative regions, while the resolution is 
impaired to a lesser extent than if a wider curve were 
used (compare Figs. 3d and 4d). For integration 
purposes, in fact, it is actually not necessary to 
eliminate the negative regions, provided that the 

integration is performed between minima and not 
from the zero-crossings. 

It is also possible to combine the retention of 
original frequencies by modifying the filter equa- 
tion, as follows: 

f= [l - kexp(-b&)1(1 - kexp[-b& - n)‘]} 

The factor k ranges from 0 to 1 and determines the 
fraction of the low original frequencies to be dis- 
carded. If k is less than 1, the ends of the filter 
function (Fig. 1) approach l-k instead of 0, and the 
o = 0 frequency should also be set to l-k. 

The most important criterion for integration 
purposes is the degree to which relative peak areas 
are preserved for peaks of different width. At the 
same time, extremely wide peaks (resulting from 
baseline shifts) should be attenuated. Fig. 5 shows 
the effect of different filter widths on the preserva- 

Fig. 4. Effect of adding increasing fractions of the original 
Fourier set during deconvolution, using a 6r value of 0.0002 in the 
chromatogram from Fig. 3. Adding 5% of the original frequen- 
cies eliminates the negative overshoot almost completely, whereas 
the resolution is only slightly impaired. As more of the original 
frequencies are added back, the baseline drift begins to reappear. 
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Fig. 5. Effect of width of the filter function used for deconvolu- 
tion on attenuation of peaks of increasing width. A simulated 
chromatogram of 100 data points, containing peaks of various 
widths and area = 1, was deconvoluted using the method in 
Table I, and the areas in the deconvoluted chromatograms were 
computed. A broader function yields a wider plateau of low, 
constant attenuation. Fourier deconvolution using the standard 
method resulted in the curve marked “Gaussian” for all peak 
widths within a broad range. In contrast to the present method, 
the traditional Fourier deconvolution method does not produce a 
region over which attenuation is constant for different peak 
widths. 

tion of peak areas with increasing peak width. Since 
for a typical HPLC trace the majority of peaks are 
less than 1% of the total length of the chromato- 
gram, all but the narrowest peak produce satisfacto- 
ry results, providing a fairly wide plateau. In con- 
trast, results of a standard FFT deconvolution 
(using three Fourier transforms and complex divi- 
sion instead of the filtering method described here), 
are shown on the curve marked “Gaussian”. The 
standard method attenuates peaks of increasing 
width to an increasing extent; hence the shape of this 
curve is relatively constant regardless of the width of 
the Gaussian transfer function used within almost 
the entire region of useful transfer function widths. 
Additionally, a peak whose width approached zero 
would also be enlarged to an unlimited extent, 
whereas in the present method its area would be 
unchanged. 

The determine whether the recovered peak areas 
are dependent on the resolution between the com- 
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ponents or their height ratios, a sequence of simu 
lated chromatograms containing peaks of differen 
heights and different degrees of separation wa 
analyzed. Fig. 6 shows that, at the point at which th 
two peaks merge into a single peak, there is a sligh 
decrease (up to 10%) in the total recovered area. Th 
size of this decrease depends inversely on bf, an 
results when the greater width of the unresolvel 
peak shifts the filter function (Fig. 1) into a region o 
greater attenuation. Hence this effect can be mini 
mized by a careful choice of hf. The effect is alsc 
maximal when the two peaks are of identical size 

It is also possible to apply the deconvolutiol 
method iteratively, using partial retention of origi 
nal frequencies and zero-clipping to reduce negativs 
peaks. This results in chromatograms such as th’ 
one in Fig. 7. Although the peaks are all clear11 
resolved, their areas depend on the original peal 
width to a greater extent than the result from a sing11 
iteration, i.e., the plateau in Fig. 1 is narrower 
Hence, although it can help determine whethe 
multiple overlapping peaks exist, and return thei 

Area of smaller 

Fig. 6. Effect of the degree of peak separation and relative peal 
height on the recovered areas. Simulated chromatograms wit1 
peaks ofconstant peak heights with maxima separated by variou 
distances were deconvoluted and the individual and total area’ 
were measured. For some values of the deconvolution paramete 
hr, a slight decrease in recovered area can occur when the tw( 
peaks are approximately one peak width apart. This effect i: 
much less pronounced when the two peaks are of different sizes 
The abscissa is peak separation in units of peak width. 
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Fig. 7. Deconvolution of a chromatogram by the method in 
Table I applied for live iterations using a filter function based on 
bf = 0.0002. The second to fifth iterations were carried out using 
a carry-over of 0.5 of the previous frequencies, and clipped at y = 

0. All the peaks contain either one or two data points, making 
integration computationally trivial and allowing accurate deter- 
minations of retention times. 

retention time, area measurements from the reitera- 
tive method should be viewed with caution. 

In some instances, deconvolution adds excessive 
high-frequency noise, which can usually be removed 
by data smoothing before or after the deconvolu- 
tion. 

The effect of noise on the deconvolution is shown 
in Fig. 8. Simulated chromatograms of 512 data 
points, containing numerous overlapping peaks 
were deconvoluted with different values of bf. As bf 
is decreased, the S/(S + N) ratio (S = signal; N = 
noise) in the deconvoluted chromatogram becomes 
progressively lower than the original, because a 
greater proportion of the signal is being discarded. 
Hence, the decrease in the signal-to-noise ratio 
caused by using too low a value of bf exactly parallels 
the decrease in area recovery caused by the same 
factor. In the case of zero noise, the S/(S + N) ratio 
is unaffected by deconvolution. 

More complicated functions than those described 
in Table I could equally well be applied to this 
method, as long they contain a flat region over a 
fixed range of higher frequencies and a smooth 
cut-off, and produce a small number of artifacts. It is 
envisaged that some of these other functions could 
produce an even sharper cut-off of peak widths 
whose areas are consistently retained. 
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Fig. 8. Effect of chromatogram noise on the signal-to-noise ratio 
in the deconvoluted chromatogram. Simulated chromatograms 
containing 512 data points, with S/(S + YV) ratios of 1.0, 0.974, 
0.95,0.905 and 0.792, were deconvoluted using bf values of 0.01, 
0.001 and 0.001. Similated white noise was produced by adding 
random numbers to the chromatogram. Smaller values of bf 
decrease the signal-to-noise ratio in direct proportion to their 
attenuating effect on the peak area (Fig. 5). No noise is added by 
the deconvolution, as indicated by the top curve. 
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